Junos Segment Routing for MPLS

COURSE OVERVIEW

This four-day course provides an in-depth introduction to MPLS segment routing (SR), otherwise known as Source Packet Routing in Networking (SPRING). It also includes two additional day's worth of self-study material.

The course focuses on the configuration of Juniper Networks routing and switching devices to support MPLS segment routing. After exploring the features and use cases for SR-MPLS, students are introduced to the building blocks of a segment-routed network (namely, adjacency segment identifiers (SIDs), node SIDs, prefix SIDs and anycast SIDs). The course includes these features for both IS-IS and OSPF. Students then learn how to use these SIDs to create label-switched paths (LSPs) and tunnels within an MPLS network. This includes the creation of shortest-path LSPs, traffic-engineered SR policies with static paths, SR policies with dynamically calculated paths using distributed Constrained Shortest Path First (CSPF), color-based SR policies with Classful Transport resolution, backup paths with Topology-Independent Loop-Free Alternate (TI-LFA), and multitopology designs with Flex Algo.

This course is based on Junos OS Release 23.4R1.10.

COURSE LEVEL

Advanced

AUDIENCE

- Individuals who work with routers that run Junos OS
- Individuals involved in the service provider industry, the data center industry, or who work in large enterprise networks
- Operators who use MPLS, BGP, and either IS-IS or OSPF to transport traffic across their network

PREREQUISITES

- Advanced routing knowledge; the <u>Advanced Junos</u> <u>Service Provider Routing</u> course or equivalent knowledge is recommended
- Intermediate knowledge of MPLS transport functions, including LDP and RSVP; the Junos MPLS Fundamentals course or equivalent knowledge is strongly recommended
- Intermediate to advanced Junos CLI experience

RELATED JUNIPER PRODUCTS

- Junos OS
- ACX Series
- MX Series
- QFX Series
- Network Design
- Paragon Pathfinder
- PTX Series

RELATED CERTIFICATION

JNCIE-SP and JNCIP-SP

CONTACT YOUR REGIONAL EDUCATION SERVICES TEAM:

Americas: training-amer@juniper.net EMEA: training-emea@juniper.net APAC: training-apac@juniper.net

OBJECTIVES

- Review crucial MPLS concepts such as the label format, the inet.3 and mpls.0 tables, and BGP next-hop resolution.
- Demonstrate the building blocks of segment routing, such as adjacency SIDs and node SIDs.
- Describe some of the many features and benefits offered by SR-MPLS.
- Demonstrate how to enable and verify adjacency segments in IS-IS.
- Demonstrate how to enable and verify adjacency segments in OSPF.
- Demonstrate how to enable node SIDs in IS-IS to create a full mesh of shortest-path LSPs.
- Demonstrate how to enable node SIDs in OSPF to create a full mesh of shortest-path LSPs.
- Demonstrate the configuration and use cases for prefix SIDs and anycast SIDs.
- Configure SR traffic engineering policies that contain paths with an explicit SID stack.
- Describe how Seamless Bidirectional Forwarding Detection (S-BFD) can monitor an SR policy.
- Configure and verify SR policies with paths that contain explicit IP hops and binding SIDs.
- Demonstrate how SR policies can dynamically calculate a path based on your traffic engineering constraints.
- Describe the configuration for an SR policy that calculates its path dynamically.
- Demonstrate SR policy features such as computed segment lists and dynamic tunnels.
- Explain how TI-LFA backup paths can radically reduce downtime during link or node failure.
- Demonstrate how to configure and verify TI-LFA in a Junos OS network.
- Explain how the BGP color community can automatically map prefixes to a specific SR policy.
- Describe how Junos transport classes offer advantages in a network with color-based traffic engineering.
- Describe the advantages and operation of Flex Algo for SR-MPLS.

Continued on the next page.

Education

Services

Education Service<u>s</u>

OBJECTIVES (continued)

- Demonstrate how to configure and verify Flex Algo on a Junos OS device.
- Describe the process by which Junos OS calculates a label stack for TI-LFA backup paths in SR-MPLS.
- Explain how enabling microloop avoidance can solve problems that may occur during network convergence.
- Demonstrate some advanced SR policy concepts, including load balancing and external controllers.
- Demonstrate how to resolve color-tagged prefixes to SR policies using the legacy inetcolor method of resolution.

COURSE CONTENTS

DAY 1

1	Refresher—MPLS, RSVP, and LDP (optional module)
	• Describe how BGP resolves its protocol next-hops
	Demonstrate how MPLS can create tunnels between
	devices Define some crucial MPI S terminology
	• Define some er detar for ES terminology
2	An Introduction to Segment Routing
	Describe how segment routing combines segments to create an end-to-end-path
	• Explain how segment routing efficiently advertises MPLS labels for shortest-path forwarding
3	The Use Cases for SR-MPLS
	• Explain the benefits of shortest-path LSPs and traffic- engineered LSPs
	• Describe some exciting features offered by segment routing, such as Flex Algo and TI-LFA
	• Explain the difference between SR-MPLS and SRv6
4	Adjacency SIDs, Part 1–IS-IS
	• Explain the consistent topology and the IP scheme used throughout this course
	Configure and verify SR-MPLS adjacency SIDs in IS-IS
5	Adjacency SIDs, Part 2–OSPF
	Configure and verify SR-MPLS adjacency SIDs in OSPF
	Lab 1: SR-MPLS Adjacency SIDs
6	Node SIDs and Shortest-Path Routing, Part 1–IS-IS
6	 Node SIDs and Shortest-Path Routing, Part 1–IS-IS Describe how the SRGB defines a block of MPLS labels for shortest-path forwarding
6	 Node SIDs and Shortest-Path Routing, Part 1–IS-IS Describe how the SRGB defines a block of MPLS labels for shortest-path forwarding Configure and verify node SIDs in IS-IS
6	 Node SIDs and Shortest-Path Routing, Part 1–IS-IS Describe how the SRGB defines a block of MPLS labels for shortest-path forwarding Configure and verify node SIDs in IS-IS Enable explicit-null behavior for node and prefix SIDs
6 7	 Node SIDs and Shortest-Path Routing, Part 1–IS-IS Describe how the SRGB defines a block of MPLS labels for shortest-path forwarding Configure and verify node SIDs in IS-IS Enable explicit-null behavior for node and prefix SIDs Node SIDs and Shortest-Path Routing, Part 2–OSPF
6 7	 Node SIDs and Shortest-Path Routing, Part 1–IS-IS Describe how the SRGB defines a block of MPLS labels for shortest-path forwarding Configure and verify node SIDs in IS-IS Enable explicit-null behavior for node and prefix SIDs Node SIDs and Shortest-Path Routing, Part 2–OSPF Configure and verify node SIDs in OSPF
6 7	 Node SIDs and Shortest-Path Routing, Part 1–IS-IS Describe how the SRGB defines a block of MPLS labels for shortest-path forwarding Configure and verify node SIDs in IS-IS Enable explicit-null behavior for node and prefix SIDs Node SIDs and Shortest-Path Routing, Part 2–OSPF Configure and verify node SIDs in OSPF Describe the link-state advertisements used by OSPF to advertise node SID information

Junos Segment Routing for MPLS

JUNIPER

Configure Junos OS for TI-LFA with strict node

Lab 8: Topology-Independent Loop-Free Alternate

Explain what types of traffic are eligible for local repair

protection

COURSE CONTENTS

DAY 2

8	 Prefix SIDs and Anycast SIDs Configure and verify prefix SIDs and anycast SIDs in IS- IS and OSPF Enable BGP to use anycast SIDs in its protocol next- hops Lab 3: Prefix SIDs and Anycast SIDs 	12	 Traffic Engineering—Dynamic SR Policies with CSPF, Part 1 Explain the purpose of CSPF and admin groups Demonstrate how to configure and verify admin groups Traffic Engineering—Dynamic SR Policies with CSPF.
9	 Traffic Engineering—Static SR Policies with Explicit Label Stacks Describe how explicit and dynamic SR policies can create tunnels that take a precise path of your choosing Configure persistent adjacency SIDs Configure a CLI-based SR policy with an explicit SID stack 		 Part 2 Configure and verify a basic SR policy that calculates a dynamic path using TE metrics Deploy an SR policy with a compute-profile that contains traffic engineering constraints of your choosing Lab 6: SR Policies with Dynamic Paths, Part 1
10	 Traffic Engineering—Static SR Policies with S-BFD Demonstrate how S-BFD can monitor the status of an SR policy Configure and verify S-BFD on an SR policy in Junos OS Lab 4: Static SR Policies with Explicit Label Stacks 	14	 Traffic Engineering—Dynamic SR Policies with CSPF, Part 3 Deploy an SR policy with a compute-profile that also references a segment-list path Configure On-Demand Next-Hops that automatically build SR policies to BGP next-hops
11	 Traffic Engineering—Static SR Policies with Explicit IP Hops Configure a CLI-based SR policy with an explicitly configured path of IP addresses Explain the purpose of the traffic engineering database Demonstrate how binding SIDs can swap one incoming label for a stack of outgoing labels 	15	 Lab /: SR Policies with Dynamic Paths, Part 2 Topology-Independent Loop-Free Alternate—Theory Explain how TI-LFA creates loop-free backup paths with full topology coverage Describe the difference between link protection and node protection in TI-LFA Topology Independent Loop Erec Alternate
	Lab 5: Static SR Policies with Explicit IP Hops	16	 Configuration Configure Junos OS for TI-LFA with link protection Configure Junos OS for TI-LFA with loose node protection

DAY 3

© 2024 Juniper Networks, Inc. Course content subject to change. See www.juniper.net/courses for the latest details. ALL-ACCESS TRAINING PASS | ON-DEMAND | COURSES | SCHEDULE | LEARNING PATHS | CERTIFICATION

Junos Segment Routing for MPLS

COURSE CONTENTS (continued)

DAY 4

17	Color-Based Traffic Engineering and the BGP Color Community	22	ר S
	 Describe the format of the BGP color community Demonstrate how to configure an SR policy with a color Explain why Junos offers two different methods of enabling color-aware prefix resolution 		
18	Color-Based Traffic Engineering with Classful		
	 Explain the advantages of resolving color-tagged prefixes using the Classful Transport method Configure automatic and manual transport classes Verify whether IP unicast prefixes have resolved using a transport class Verify whether VPN prefixes have resolved using a transport class 	23 24	
	Lab 9: Resolving Color-Aware LSPs with Classful Transport		
19	 Flex Algo, Part 1 Explain the advantage of using Flex Algo to create multiple topologies with their own unique SPF metric Explain the meaning of algos 0, 1, and 128 to 255 Configure the elements used to build a unique flexible algorithm definition 	25	
20	 Flex Algo, Part 2 Configure a Flex Algo topology using the Classful Transport method of resolution Verify and troubleshoot a Junos OS Flex Algo deployment Describe some important design considerations when descent for a flex Algo 		
	deploying Flex Algo		
21	 Where Do You Go from Here? Describe some of the ways that you can continue your SR-MPLS studies once you've completed this course Explain how to continue getting hands-on practice with Junos OS once the course is complete Describe the Juniper Networks certification track 		

SELF-STUDY MODULES

22	Topology-Independent Loop-Free Alternate—The Label Stack		
	Explain how P space and extended P space find loop-free backup paths		
	Demonstrate how Q space can be used to tunnel backup paths across topological loops		
	Describe how adj-SIDs can bridge gaps between P space and Q space		
23	Microloop Avoidance		
	• Describe how microloop avoidance can prevent temporary loops between two nodes during network convergence		
	Configure and verify microloop avoidance in Junos OS		
24	SR-MPLS—Additional Concepts		
	• Describe how SR policies can use multiple primary paths and a backup secondary path		
	 Explain how interface sets can offer unequal-cost load balancing 		
	Demonstrate how to create an anycast SR policy		
	• Describe how external controllers like Paragon Pathfinder use BGP-LS and PCEP to deploy LSPs across your entire network estate		
	• Explain why anycast SIDs require a consistent SRGB		
25	Color-Based Traffic Engineering with the inetcolor.0		

Color-Based Traffic Engineering with the inetcolor.0 Table

- Describe how the inetcolor.0 table resolves color-tagged BGP unicast prefixes
- Explain how to resolve BGP-based MPLS VPN prefixes in the inetcolor.0 table

JSR09042024